摘要:硅(Si)具有超高的理论比容量、较低的嵌锂电位及丰富的储量等优势,是发展高比能锂离子电池的关键负极材料。同纳米Si相比,低成本、高振实密度和低界面反应的微米Si应用于高体积能量密度器件独具优势。然而其300%体积形变产生的巨大应力,使得颗粒破碎粉化、电极结构退化以及导电网络失效等问题更为严峻,极大制约了其商业化进程。粘结剂是适应Si体积变化,提供稳定导电网络的重要手段。开发高容量、高稳定微米
摘要:近年来,基于非富勒烯受体(NFAs)的有机太阳能电池(OSCs)取得了迅猛的发展。单异质结OSCs的光电转换效率(PCE)已突破19%,这进一步推动了有机光伏技术的商业化进程。光电转换效率的快速提升源于活性层材料的创新开发、器件工程的优化以及对器件物理的更深刻理解。然而,稳定性问题已成为制约其商业化的一个主要因素。目前,关于活性层材料和电池器件稳定性的研究仍相对有限。在本综述中,我们对NFA
摘要:在化石能源日益短缺、资源消耗急剧增加的背景下,开发可再生的清洁能源,如太阳能和风能,变得尤为重要。然而,这些清洁能源供应不稳定,因此需要大规模能源转换和储存装置的发展。在这方面,锌-空气电池能量密度高、安全性好、成本低、易组装、对环境友好并且金属锌储量丰富,作为能源储存与转换器件有良好的发展前景,但在应用的过程中仍存在一些问题。其中,隔膜在锌-空气电池中起着隔离正负极,防止短路的重要作用,但
摘要:碘铅甲眯(FAPbI3)钙钛矿太阳能电池因其优异的光伏性能而受到广泛关注,但器件的长期稳定性仍然是FAPbI3太阳能电池的关键问题。FAPbI3黑色钙钛矿相在室温下会相变为黄色非钙钛矿相,且水分会加速这一相变。界面工程是提高钙钛矿太阳能电池稳定性的常用方法之一。作为绿色溶剂,离子液体被认为是有毒界面修饰剂的潜在替代品,这也提高了它们的商业可行性,并加速了它们在可再生能源市场的应用。本研究利用
摘要:得益于较高的理论能量密度、环境友好性和丰富的海水储量,海水基锌-空气电池(S-ZABs)被认为是一种极具应用前景的储能和能源转换装置,是解决能源短缺和环境污染问题的能源装置之一。然而对于S-ZABs而言,构筑在海水中具有高耐氯离子腐蚀性与高性能的阴极氧还原反应电催化剂仍然具有挑战性。因此,我们通过高温硒化策略,在氮掺杂介孔碳材料上设计了超薄碳铠甲层封装的Co9Se8纳米颗粒高效ORR电催化剂
摘要:固体氧化物电解池(SOEC)中阳极析氧反应动力学较为迟缓,限制了SOEC器件电催化转化能力,因此针对阳极材料的改性研究对于进一步提升SOEC电化学性能十分关键。高熵钙钛矿(HEP)在许多反应中表现出良好的催化活性,但在SOEC中的应用鲜有研究。本文通过在双钙钛矿的A位或A'位分别掺杂不同的稀土金属、碱土金属或碱金属离子,合成了(Pr0.2La0.2Sm0.2Nd0.2Gd0.2)BaCo2O
摘要:铁硫化物因其较高的理论容量,被认为是一种很有前途的钠离子电池负极材料。然而,铁硫化物在充放电过程中存在较大的体积变化,导致其倍率性能和稳定性较差。本文通过简单的一步法策略,制备了一种具有三维簇状结构的硫掺杂碳包覆的Fe0.95S1.05纳米球(Fe0.95S1.05@SC),并研究了其储钠性能。硫掺杂碳层可提高材料的导电率,缓解Fe0.95S1.05纳米球在反应过程中产生的体积膨胀,故提升了
摘要:由于钠资源丰富,钠离子电池在大规模储能方面显示出巨大的潜力。随着近年来研究的深入,在正极材料中引入适量的阴离子氧化还原可以有效地提升钠离子电池的能量密度,同时减少高成本过渡金属元素如V、Co和Ni等的用量。有研究表明,材料循环过程中不可逆的氧损失以及Mn4+/Mn3+氧化还原的激活,导致了层状氧化物正极材料持续的电压衰减。本工作通过在Nax[Li,Ni,Mn]O2基钠离子电池正极材料中引入N
摘要:锂金属电池的循环稳定性和倍率能力受制于多个因素,如阳极/阴极电解液界面的品质和电解液溶剂化特性。在该工作中,我们提出了阴离子受体电解液添加剂策略,通过六氟苯添加剂对Li+溶剂化结构进行调控,实现了PF6−的稳定性并提高了电解液的导电性,优化了阳极/阴极电解液界面中间相的组分/结构特征,有效抑制了锂枝晶的生长和提升了阴极表面的Li+传输,Li||Li对称电池在1 mA∙cm−2的电流密度下实现
摘要:高效、高选择性的单原子催化剂(SACs)在电催化硝酸盐还原制氨过程中具有重要作用。然而,由于中间体、金属活性中心和配位环境之间复杂的竞争性电子相互作用,仍然面临挑战。本研究采用密度泛函理论(DFT)计算,对27种SACs以及双层SACs (BSACs)进行了系统研究,通过轴向d–d轨道杂化提高了从SACs到BSACs的电催化硝酸盐还原反应(NO3RR)的活性和选择性。考虑到可能的O端、N端、
摘要:废水中存在的肼和尿素会对环境造成严重污染。利用电化学氧化技术处理含肼和尿素的废水,既可以有效处理废水,实现氮循环,又能将肼和尿素作为新型燃料,有助于新能源的发展。然而,目前实现肼氧化(HzOR)和尿素氧化(UOR)的电化学技术仍存在挑战。因此,开发低成本、高效且稳定性好的电催化剂是实现这一技术的先决条件。在本文中,我们采用水热-碱刻蚀-磷化的三步方法,制备了一种富含阳离子缺陷的双金属磷化物N
摘要:近年来,具有可控元素分布的铜基多金属纳米晶作为CO2还原反应(CO2RR)的电催化剂,受到了广泛研究。通过对铜电催化剂进行二次甚至多次的金属元素修饰,能够有效改变其整体d带结构并引起d带中心的位移。这种变化可以影响铜对关键中间体的表面亲和力,从而影响后续的催化途径。除了调整电子结构,形貌工程也成为提高CO2RR电催化性能的有效手段。相对于随机形状的球形颗粒,基于二维纳米片构建的三维多孔结构有